Detecting Missing Data
Real data has gaps. Before analysis, you need to find them.
Check for missing values:
df.isnull()
This returns a DataFrame of True/False for each cell.
Count missing values per column:
df.isnull().sum()
Percentage missing:
df.isnull().sum() / len(df) * 100
Find rows with any missing value:
df[df.isnull().any(axis=1)]
Missing data affects calculations and can indicate data quality issues. Always check before proceeding.
I cover missing data strategies in The Ultimate Pandas Bootcamp.